Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract LSST Camera CCDs produced by the manufacturer e2v exhibit strong and novel residual charge images when exposed to bright sources. These manifest in images following bright exposures both in the same pixel areas as the bright source, and in the pixels trailing between the source and the serial register. Both of these pose systematic challenges to the Rubin Observatory Legacy Survey of Space and Time instrument signature removal. The latter trail region is especially impactful as it affects a much larger pixel area in a less well defined position. In our study of this effect at UC Davis, we imaged bright spots to characterize these residual charge effects. We find a strong dependence of the residual charge on the parallel clocking scheme, including the relative levels of the clocking voltages, and the timing of gate phase transition during the parallel transfer. Our study points to independent causes of residual charge in the bright spot region and trail region. We propose potential causes in both regions and suggest methodologies for minimizing residual charge. We consider the trade-offs of these methods including decreasing the camera's full well and dynamic range at the high end. The voltage scheme in the main camera was altered to address this effect accordingly.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Abstract We examine the simple model put forth in a recent note by Loeb regarding the brightness of space debris in the size range of 1–10 cm and their impact on the Rubin Observatory Legacy Survey of Space and Time (LSST) transient object searches. Their main conclusion was that “image contamination by untracked space debris might pose a bigger challenge [than large commercial satellite constellations in Low-Earth orbit].” Following corrections and improvements to this model, we calculate the apparent brightness of tumbling low-Earth orbit (LEO) debris of various sizes, and we briefly discuss the likely impact and potential mitigations of glints from space debris in LSST. We find the majority of the difference in predicted signal-to-noise ratio (S/N), about a factor of 6, arises from the defocus of LEO objects due to the large Simonyi Survey Telescope primary mirror and finite range of the debris. The largest change from the Loeb estimates is that 1–10 cm debris in LEO pose no threat to LSST transient object alert generation because their S/N for detection will be much lower than estimated by Loeb due to defocus. We find that only tumbling LEO debris larger than 10 cm or with significantly greater reflectivity, which give 1 ms glints, might be detected with high confidence (S/N > 5). We estimate that only one in five LSST exposures low on the sky during twilight might be affected. More slowly tumbling objects of larger size can give flares in brightness that are easily detected; however, these will not be cataloged by the LSST Science Pipelines because of the resulting long streak.more » « less
- 
            Abstract The apparent brightness of satellites is calculated as a function of satellite position as seen by a ground-based observer in darkness. Both direct illumination of the satellite by the Sun as well as indirect illumination due to reflection from the Earth are included. The reflecting properties of the satellite components and of the Earth must first be estimated (the Bidirectional Reflectance Distribution Function, or BRDF). The reflecting properties of the satellite components can be found directly using lab measurements or accurately inferred from multiple observations of a satellite at various solar angles. Integrating over all scattering surfaces leads to the angular pattern of flux from the satellite. Finally, the apparent brightness of the satellite as seen by an observer at a given location is calculated as a function of satellite position. We develop an improved model for reflection of light from Earth’s surface using aircraft data. We find that indirectly reflected light from Earth’s surface contributes significant increases in apparent satellite brightness. This effect is particularly strong during civil twilight. We validate our approach by comparing our calculations to multiple observations of selected Starlink satellites and show significant improvement on previous satellite brightness models. Similar methodology for predicting satellite brightness has already informed mitigation strategies for next-generation Starlink satellites. Measurements of satellite brightness over a variety of solar angles widens the effectiveness of our approach to virtually all satellites. We demonstrate that an empirical model in which reflecting functions of the chassis and the solar panels are fit to observed satellite data performs very well. This work finds application in satellite design and operations, and in planning observatory data acquisition and analysis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
